Space Lower Bounds for Graph Exploration via Reduced Automata

نویسندگان

  • Pierre Fraigniaud
  • David Ilcinkas
  • Sergio Rajsbaum
  • Sébastien Tixeuil
چکیده

We consider the task of exploring graphs with anonymous nodes by a team of non-cooperative robots modeled as finite automata. These robots have no a priori knowledge of the topology of the graph, or of its size. Each edge has to be traversed by at least one robot. We first show that, for any set of q non-cooperative K-state robots, there exists a graph of size O(qK) that no robot of this set can explore. This improves the O(K) bound by Rollik (1980). Our main result is an application of this improvement. It concerns exploration with stop, in which one robot has to explore and stop after completing exploration. For this task, the robot is provided with a pebble, that it can use to mark nodes. We prove that exploration with stop requires Ω(log n) bits for the family of graphs with at most n nodes. On the other hand, we prove that there exists an exploration with stop algorithm using a robot with O(D log ∆) bits of memory to explore all graphs of diameter at most D and degree at most ∆.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Space Lower Bounds for Directed st-Connectivity on Graph Automata Models

Directed st-connectivity is the problem of detecting whether there is a path from a distinguished vertex s to a distinguished vertex t in a directed graph. We prove time–space lower bounds of ST = Ω( n 2 log n log(n log n/S) ) and S 1

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Chaudhuri and Walker : Computing Lower Bounds On

1 Computing Lower Bounds on Functional Units Before Scheduling1 Samit Chaudhuri2, Robert A. Walker3 Abstract|This paper presents a new polynomial-time algorithm for computing lower bounds on the number of functional units (FUs) of each type required to schedule a data ow graph in a speci ed number of control steps. A formal approach is presented that is guaranteed to nd the tightest possible bo...

متن کامل

Bounds on First Reformulated Zagreb Index of Graph

The first reformulated Zagreb index $EM_1(G)$ of a simple graph $G$ is defined as the sum of the terms $(d_u+d_v-2)^2$ over all edges $uv$ of $G .$ In this paper, the various upper and lower bounds for the first reformulated Zagreb index of a connected graph interms of other topological indices are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005